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Networks with given two-point correlations: Hidden correlations from degree correlations
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This paper orders certain important issues related to both uncorrelated and correlated networks with hidden
variables, in which hidden variables correspond to desired node degrees. In particular, we show that networks
being uncorrelated at the hidden level are also lacking in correlations between node degrees. The observation
supported by the depoissonization idea allows us to extract a distribution of hidden variables from a given node
degree distribution. It completes the algorithm for generating uncorrelated networks that was suggested by
other authors. In this paper we also carefully analyze the interplay between hidden attributes and node degrees.
We show how to extract hidden correlations from degree correlations. Our derivations provide a mathematical
background for the algorithm for generating correlated networks that was proposed by Bogufid and

Pastor-Satorras.
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I. INTRODUCTION

Recently, the techniques of equilibrium and nonequilib-
rium statistical physics were developed to study complex
networks [1-3]. This paper is devoted to equilibrium corre-
lated networks, with a special attention given to networks
with two-point correlations [4-8].

What does it mean that a network is correlated In simple
words one can say that there exist certain relationships be-
tween network nodes. For example, when one considers a
social network, i.e., a group of people with links given by
acquaintance ties one may expect that young people are
mostly surrounded by other young people. One may also
expect that wealthy individuals are more often associated
with other wealthy individuals than with poor ones. In some
sense, the above examples let one suppose that social net-
works are positively correlated, at least when one considers
an individual’s age or income. The situation is more conten-
tious if one asks for the relationship between genders of the
nearest neighbors. Now, it is difficult to assess if social net-
works are positively or negatively correlated. The above ex-
amples show that even taking into account a single network
one can observe correlations at different levels of the system
complexity. Each node i in such a system has assigned a set
of different attributes such as, gender g;, age a;, education e;,
attractiveness k;, etc. The last property may be quantified as
a number of nearest neighbors of the considered individual.
In the graph theory [9] the quantity is known as node’s de-
gree. The above outlined network correlations and multilevel
structure constitute two main issues undertaken in this paper.

Multilevel topology has been recently considered by sev-
eral groups of researchers [10-14] and, at present, the pro-
posed models are known as random networks with hidden
variables. In general, random networks with hidden variables
have a fixed number of vertices N. Each node in a network
belonging to this class of models has assigned a hidden vari-
able h; (fitness, tag) randomly drawn from a fixed probability
distribution R(h;) (throughout the paper we use the symbol R
with reference to distributions at a hidden level and P with
reference to node degrees). Edges are assigned to pairs of
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vertices {i,/} with a given connection probability r;;. In the
simplest case r;; depends only on values of the hidden vari-
ables /; and &, but in a more general situation it may, for
example, involve hidden variables characterizing the nearest
or the next-nearest neighbors of both considered nodes i and
j. In fact, the first case represents networks with at most
two-point correlations at the level of hidden variables, while
the latter one allows for higher-order correlations.

Below we outline the concept of network correlations in a
more rigorous way. The introduced ideas will be completed
and widely discussed in the next section.

From a mathematical point of view, the lack of two-point
correlations means that the probability R(h;|h;) that an edge
departing from a vertex i of property h; arrives at a vertex j
of property /; and is independent of the initial vertex i
[15,16]. The above translates into the fact that the nearest
neighborhood of each node is the same (in statistical terms).
On the other hand, when R(h;|h;) depends on both &; and h;,
one says that the studied network has two-point correlations
[5,7]. To characterize this type of correlation one usually
takes advantage of the joint, two-dimensional distribution
R(h;,h;), which describes the probability of a randomly cho-
sen edge to connect vertices labeled as h; and 4;.

In order to characterize a network in a more detailed way
the concept of higher-order correlations, given by multidi-
mensional probability distributions, should be used. In this
paper we limit ourselves to two-point correlations. The lack
of higher-order correlations is ensured by the factorization
of the conditional distribution R(hj.hjp, ... hj,|h)
=R(h;;|h)R(hjs|h;)...R(h;,|h;), which describes the prob-
ability of a node of property #; to have n neighbors labeled as
hji1,hjs, ..., hj,. Such networks, with the only two-point cor-
relations are called Markovian, due to the reason that they
are completely defined by the joint distribution R(h;,h;),
which on its own turn completely determines the conditional
distribution R(hj|h,~) and the distribution of hidden variables
R(h;). Relationships between R(;,h;), R(hj| h;), rij, and R(h;)
will be analyzed later.

After this short introduction to the concept of hidden vari-
ables and to the problem of network correlations we may go
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back to the main topic of the paper, i.e., the interplay be-
tween different levels of the network complexity. The ap-
proach has been initiated by Soderberg [12] and developed
by Bogufid and Pastor-Satorras [7]. Bogufid and Pastor-
Satorras have concentrated on the question: how correlations
at the level of hidden variables affect pattern of connections
at the level of node degrees. Given R(h;,h;) the authors have
derived an analytical expression for the joint distribution of
degrees of the nearest neighbors P(k;,k;). In this paper, we
concentrate on the simplest case of the considered networks
in which hidden attributes mimic nodes degrees (see Sec. V
in Ref. [7]), and we ask the reverse question: what kind of
hidden correlations R(h;,h;) produce the given pattern of
node degree correlations P(k;, k).

As a matter of fact, since most of us are better acquainted
with node degree notation than with abstract hidden vari-
ables, the reverse approach seems to be very interesting, at
least from the methodological point of view. It is already
well known that there exist degree correlations in real net-
works [4]. On the other hand, due to the lack of data, nothing
is known about correlation at the hidden level, from which
the observed network structure arises. The paper represents a
small step towards understanding the phenomenon of self-
organization in complex networks beyond the predominant
approach of the so-called evolving networks [17,18].

The paper is organized as follows. In Sec. II we review
the general results on correlated random networks with hid-
den variables. The salient issues concerning two-point corre-
lations, which have been originally presented in Refs. [7,8],
are discussed in this section. Section III is devoted to theo-
retical aspects of our inverse problem. Some remarks on un-
correlated networks and a practical algorithm for generating
random networks with two-point degree correlations are also
given in this section. Finally, in Sec. IV we draw our con-
clusions.

II. CORRELATED NETWORKS WITH HIDDEN
VARIABLES

A. Construction procedure

Probably the most attractive feature of random networks
with hidden variables is the construction procedure that con-
sists of only two steps.

(i) First, prepare N nodes and assign them hidden vari-
ables independently drawn from the probability distribution
R(hy),

(ii) Next, each pair of nodes {,j} link with probability r;;.
Note that the above procedure does not include any ambigu-
ous instructions like in the case of...do.... The lack of such
ambiguities enables the analytical treatment of the discussed
models.

The particularly simple class of sparse random networks
with hidden variables has been recently considered by
Boguiid and Pastor-Satorras [7]. Provided that the connection
probability scales according to

f(hi’h )
ryj= —, (1)

N
where f(h;,h;)=f(h;,h;), the authors have shown that the de-
gree distribution of nodes characterized by a fixed value of
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hidden variable %; is given by the Poisson distribution

Dk ()

g(ki|hi) = !

; ()

where (k(h;)) stands for the average degree of nodes with

hidden attribute 4;, and in the considered case of attributes,
which correspond to hidden (desired) node degrees

(k(h,))=N f riiR(h))dh; = h;. (3)

The result expressed by Eq. (2) is very important because it
joins the two levels of network complexity. Moreover, as we
will show later, the above-mentioned result together with the
formula (3) allows us to freely move between the notation of
hidden variables and the notation of nodes degrees. In par-
ticular, the degree distribution P(k;) gains a simple form of
Poissonian convolution

e‘hihf"
P(k;) = ol R(h;)dh;, (4)

that can be inverted providing us with the formula for the
distribution of hidden variables R(h;) resulting in the desired
P(k;). (Note that the last relation between both distributions
P(k;) and R(h;) implies the following relation between their
moments: (h")=(k(k—1)-+-(k—n+1)), and in particular, (/)
={k), (h*)=(k(k—1)).) As a matter of fact, in the case of
other pair-related distributions, like R(h;,h;) and P(k;,k;), it
is also possible to obtain relations similar to Eq. (4), and to
invert them. However, before we proceed with the inverse
problems, we have to recall the most important issues related
to two-point correlations.

B. Two-point correlations

One usually thinks about a network as about a collection
of nodes and links. The distribution of hidden variables R(k;)
is the basic characteristic of the set of nodes, whereas the
joint distribution R(h;,k;), describing two-point correlations,
applies to the set of edges (see Fig. 1). Both distributions
express the probability that a random representative of its
own ensemble has assigned a given attribute, i.e., property #;
in the case of node, and a pair of hidden variables {/;,%;} in
the case of edge.

At the moment, let us briefly comment on Fig. 1. The
second stage of the figure shows the set of nodes and the set
of links, both corresponding to the simple network presented
at the first stage of the same figure. Obviously, based only on
the two sets it is almost impossible to recreate the original
network. Such a representation related to a single network
neglects much information. What is lacking are higher-order
correlations. On the other hand, the joint distribution
R(h;,h)) characterizing the set of edges conveys all the infor-
mation that is required to construct an ensemble of Markov-
ian random networks (see the third stage of Fig. 1). In fact,
all the calculations performed in this paper are related to
such ensembles.
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FIG. 1. Schematic representation of an ensemble of random net-

works with a given two-point correlation at the level of hidden
variables. A detailed description of the figure is given in the text.

For a given network in the thermodynamic limit, both
distributions R(%;) and R(h;,h;) may be defined in the fol-
lowing way:

h
R =01 ©)
and
Ry = Eh) _ Eh) ©

2E (k)N

where N(h;) gives the number of nodes assigned by h; and
N=[N(h;)dh;, whereas E(h; h;) stands for the number of
links labeled as {i;,h,}, and due to the normalization condi-
tion E=[[E(h;,h;)dhdh;/2=(k)N.

The connection probability r;; [Eq. (1)] may be simply
expressed by the ratio between the actual number of edges
connecting vertices of tags i; and &, and the maximum value
of this quantity

rij= Elh.h) . (7)
Emux(hi’hj)

Since, during the network construction process one analyzes
all pairs of nodes, the maximum number of the considered
connections is given by E,,,,=N(h;)N(h;). Now, taking ad-
vantage of Eq. (6), the expression for r;; may be rewritten in
the following form:
ROk ©
Y7 NR(h)R(h))’
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To fulfill the discussion on two-point correlations it is
necessary to define the relation between the two distributions
(5) and (6). The relation is encoded in the so-called hidden
(desired) degree detailed balance condition

E(hl’h]) d_ef<h>R(hl?h/)
(k(h))N(h;) ~ hiR(h)

R(h j|hi) = > (9)
which is, in fact, the key feature that justifies Egs. (3) and
(4). At the moment, note the analogy between the last iden-
tity and the real degree detailed balance condition [7] that
holds in any Markovian network

P(kj|ki) = kP (k)

(10)

C. Interplay between hidden variables and node degrees

Each node of the considered networks is characterized by
two parameters: hidden variable 4; and degree k;. The prob-
ability p(k;Nh;) that two given parameters ; and k; meet
together in a certain node is described by the identity

p(k; N hy) = R(h)g(ki|h) = P(k)g" (hilk;). (11)

The meaning of both conditional distributions g(k;|k;) and
g (h;|k;) is simple. The first distribution g(k;|k;) [Eq. (2)] has
just been introduced. It describes the probability that a node
labeled by h; has k; nearest neighbors. The second distribu-
tion g"(h;|k;) is complementary to the first one, and gives the
probability that a node with k; nearest neighbors is labeled by
h;.

The knowledge of g(k;|h;) and g"(h;|k;) allows one to find
the relation between the joint distributions R(h;,h;) and
P(k;,k;) characterizing pair correlations, respectively, at the
level of hidden variables and at the level of node degrees.
Simple arguments let one describe the interplay by the fol-
lowing relation [19]:

P(k;,k;) = J f g(k; = 1|h)R(h;,h))g(k; = 1|h;)dh,dh;.

(12)

The last expression states that if one knows hidden corre-
lations then it is possible to calculate degree correlations.
Relating the problem to the present state of the art in the
field of complex networks it is a very artificial situation. The
concept of networks with hidden variables is still little
known because most of the researchers are strongly attached
to the node degree notation. From this point of view, the
reverse problem that would answer the question: What kind
of hidden correlations produce given degree correlations,
seems to be very attractive. In addition, since one knows
how to construct Markovian networks with hidden variables,
the solution of the above problem would also allow us, in a
simple way, to generate networks with given two-point de-
gree correlations. We work out the problem in Sec. III.

In fact, the idea of generating networks with given degree
correlations by means of networks with hidden variables
originates from Bogufid and Pastor-Satorras (see Sec. V in
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Ref. [7]). The authors have argued that since the conditional
probability g(h;|k;) is Poissonian [Eq. (2)], the joint distribu-
tion for node degrees [Eq. (12)] approaches the joint distri-

bution for hidden variables for k,,k,> 1,

and, respectively, asymptotic behavior of the degree distribu-
tion is given by

P(k;) = R(k;). (14)

The range of convergence of the two distributions has been
estimated by Dorogovtsev [8], who has shown that both ap-
proximations (13) and (14) are only acceptable when

R(h;,h) and R(h;) are sufficiently slowly decreasing.

II1. HIDDEN CORRELATIONS FROM DEGREE
CORRELATIONS

A. Depoissonization

At the moment, let us examine Eq. (4) more carefully.
Depending on whether #; is a discrete or continuous variable,
the expression for P(k;) is, respectively, a discrete or integral
transform with a Poissonian kernel [20]. The issue of deter-
mining R(h;) from P(k;) is simply the problem of finding the
inverse transform [21], and one can show (see Appendix A)
that for some P(k;) there indeed exists a unique R(%;), which
satisfies Eq. (4). When #&; is continuous one gets

R(h) =" F[G(ix)], (15)

where F~! denotes the inverse Fourier transform and G
stands for the generating function for the degree distribution
P(k;),

G(ix) = X, (ix)kiP(k;). (16)
ki

In the case of discrete h;, the inverse Poisson transform is
given by the formula

R(h;) =" Z7[G(-Inx)], (17)

where Z~! describes the inverse Z transform.
The same applies for the joint degree distributions char-
acterizing two-point correlations. Since
ki
(ki = 1|hi) = ;g(kivli), (18)

the formula (12) may be rewritten as

P(k,,k ff (k|h)—”Lg(k|h)dhdh (19)

Now, it is easy to see that P(k;,k;) is connected with R(h;, ;)
by the two-dimensional Poisson transform and
R(hnh() —

hithy P F G (i,
nh, ¢ FHFG (ix.iy)]} (20)

where
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G liviy) =3 S () (i)t ek ). 1)

i N
The last two expressions can be simply translated for the
case of discrete hidden variables. Since, however, Fourier
transforms are more convenient to work with than Z trans-

forms, we have decided to pass over such a reformulation.

B. Some remarks on uncorrelated networks

As we said at the beginning of this paper, the lack of pair
correlations at the level of hidden variables means that the
conditional probability Ro(h;|h;) does not depend on h; (to
differentiate between uncorrelated and correlated networks
the characteristics related to the former case have been de-
noted by the subscript “0”). In fact, it is simple to show that

Ro(hjlh) = Ro(h ) (22)

(h)

and, respectively, the joint distribution [Eq. (9)] gains a fac-
torized form
h;Ro(hj)h:Ry(h
o) h;Ro(h;) (23)

(ny?

Inserting the above expression into Eq. (7) one gets the for-
mula for the connection probability in uncorrelated networks

RO(hl’ j)

0 Jihy
rij(hi,h;) = UON (24)
Now, the question is, does the lack of pair correlations at
the hidden level translate to the lack of pair correlations be-
tween degrees of the nearest neighbors? Inserting Eq. (23)
into Eq. (12) and then taking advantage of the degree de-
tailed balance condition (10), one gets the answer

Po(kjlk;) = Po(k ), (25)

(k)

i.e., the lack of hidden correlations results in the lack of node
degree correlations. Thus, in order to generate an uncorre-
lated network with a given degree distribution Py(k;) one has
to (i) prepare the desired number of nodes N, (ii) label each
node by a hidden variable randomly taken from the distribu-
tion Ry(h;) given by Eq. (15) or Eq (17). (iii) Each pair of
nodes links with the probability r [Eq. (24)].

(See also other methods for generatlng random uncorre-
lated networks with a given degree distribution [15,22]).

Note also that due to Eq. (3), the connection probability
O(h,, h;) [Eq (24)] may be calculated as the density of con-
nections pl](k,, J) among the degree classes k; and k; aver-
aged over all pairs of nodes possessing hidden varlables
respectively, equal to /; and A,

J

where
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FIG. 2. Density of connections p?j(k,-,k-) among the degree
classes k; and k; in different uncorrelated networks with hidden
variables. The points stand for the results of numerical simulations
averaged over 500 networks of size N=5000, whereas the solid line
corresponds to Eq. (27).

kik;

0 AT
C(kink;) = ) 27
pijkikj) N (27)
The last expression describing the density of connections
between nodes of degrees k; and k; in uncorrelated sparse
networks has already been used by several authors (in par-

ticular, see Refs. [23,25]).

C. Examples of uncorrelated networks
1. Classical random graphs of Erdos and Renyi

The degree distribution in the Erdés-Renyi (ER) model is
Poissonian,
—(ky ) Nk
e k)"
m®=—%L,h>0 (28)
The first step towards the calculation of the required distri-
bution Ry(h;) is finding a characteristic function for Poisson
distribution. Taking advantage of Eq. (16) one gets

G(ix) = 01, (29)

Now, inserting the exponential function into Eq. (15) or Eq.
(17), one can see that the distribution of hidden variables in
classical random graphs is, respectively, given by the Dirac’s
delta function (in the case of continuous #;) or the Kronecker
delta (in the case of discrete /;)

Ro(h;) = 8(h; = (k)). (30)

The above result means that all vertices are equivalent, and
the connection probability at the level of hidden variables
[Eq. (24)] is given by

~

(k
rg:ﬁ. (31)

Figure 2 presents the density of connections pg.(k,-,kj) be-
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Exponential networks
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FIG. 3. Distribution of hidden variables, and degree distribu-
tions obtained from numerical simulations of uncorrelated (Sec.
Il C) and correlated (Sec. I E) exponential networks.

tween nodes characterized by degrees k; and k; in the ER
model, and other uncorrelated networks. As one can see,
there exists a very good agreement between the formula (27)
and the results of numerical simulations.

2. Networks with exponential degree distribution

Now, let us suppose that

(k)"

Py(k) = Rt

k=0. (32)

Generating a function for the above degree distribution is
given by an infinite geometric series, which converges to

G(ix) (33)

1
T+ k) - ilk)x
for x<<x,=(k)+1)/{k), and diverges for x=x,. Now, taking
into account the discussion given in Appendix A, one can
show that Eq. (15) provides a reasonable distribution of hid-
den variables

oo
(ky

which produces such a degree distribution that is very similar
to the desired one [Eq. (32)] (see Fig. 3).

Ry(h;) = h;=0, (34)

3. Scale-free networks

In mathematical terms, the scale-free property translates
into a power-law degree distribution

A
PO(ki) = ki=1, (35)
ki
where « is a characteristic exponent and A represents a nor-

malization constant. Generating a function for this distribu-
tion is given by the polylogarithm
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Asymptotic scale-free networks a=3 m=1 ]

m  Degree distribution P(k)

10" _ O Distribution of hidden variables R(h) _

10°F

R(h), P(k)

10°F

1000
h. k

FIG. 4. Degree distribution in uncorrelated networks with scale-
free distributions of hidden variables [Eq. (38)]. The points repre-
sent the results of numerical simulations whereas the solid lines
correspond to Eq. (39).

= A Li,(ix). (36)

0 NG
Glix)=AS (’xz
k=1 ki

K

To derive the distribution of hidden variables that lead to an
uncorrelated scale-free network, one has to find the inverse
Fourier transform of the polylogarithm with the imaginary
argument

Ro(h;) = Ae"iF[Lig(ix)], (37)

or the adequate inverse Z transform.

Unfortunately, it does not appear that closed-form solu-
tions for both inverse transforms can be simply obtained.
Nevertheless, some asymptotic results for scale-free net-
works can be derived. In particular, one can show that the
power-law distribution of hidden variables

— DmleD
Ro(h;) = %, h;=m, (38)

leads to asymptotic scale-free networks with degree distribu-
tion given by

I'k;— a+1,m)

_ _ (a-1)
P(k;)=(a=1)m X ,

(39)

where I'(x,y) stands for incomplete gamma function. In the
limit of large degrees k;>1 the above degree distribution
decays as P(k;) ~k;“ (see Fig. 4).

The effect of structural cutoffs in power-law distributions
of hidden variables with <3 [Eq. (38)], imposing the larg-
est hidden variable to scale as h,,,,~ VN (the relation follows
from r?j$l [Eq. (24)]), does not represent any problem in
the studied formalism. The effect of #,,,, in the scale-free
R(h;) may be considered as an exponential cutoff
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- (a-1)
R(/’li) — M ex (_ h

e —) . (40)

hmax

Due to the properties of the Poisson transform [20], the

above R(h;) results in a truncated power-law degree distribu-

tion [Eq. (39)]

Tki—a+1,m) (a-1m'*
k;! (GV/ S D

P(k;) = (41)
As expected [see the discussion of Eq. (14)], in the limit of
large degrees the last formula approaches Eq. (40).

Before we finish with scale-free networks let us, once
again, concentrate on Fig. 4. The figure presents degree dis-
tribution P(k;) in sparse networks with scale-free distribu-
tions of hidden attributes R(k;) [Eq. (38)]. One can observe
that although both distributions converge in the limit of large
degrees, there exist serious deviations between Egs. (38) and
(39) in the limit of small degrees. The relative behavior of
the two distributions lets one expect that the correct R(h;)
reproducing the pure scale-free degree distribution P(k;)
should describe a kind of condensate with a huge number of
nodes characterized by very low values of hidden attributes.
On the other hand, despite the ambiguous behavior of P(k;)
for small degrees, the power-law tail is interesting in its own
right. A number of real networks have fat-tailed degree dis-
tributions. The above allows us to deduce on fat-tailed dis-
tributions of underlying hidden attributes assigned to indi-
viduals cocreating real networks.

D. How to generate correlated networks with a given degree
correlation

Here, we again make use of the dePoissonization idea
proposed in Sec. III A. The procedure of generating random
networks with a given two-point, degree correlation P(k;,k;)
is as follows:

(i) First, prepare N nodes;

(ii) next, label each node by a hidden variable randomly
taken from the distribution R(%;) [Eq. (15)] and,;

(iii) finally, link each pair of nodes with the probability r;;
[Eq. (7)], where R(h;,h)) is calculated according to the for-
mula (20).

Although very clear, the above procedure suffers a certain
inconvenience: given a joint degree distribution P(k;,k;), the
closed-form solution for R(h;,h;) [Eq. (20)] is often hard to
get. Since, however, there exists a number of algorithms for
the numerical inversion of Fourier transform, the above does
not represent a real problem.

E. Examples of correlated networks

To make our previous derivations more concrete, we
should immediately introduce some examples of correlated
networks. In order to simplify the task we will take advan-
tage of general patterns for joint degree distributions with
two-point assortative (a) and disassortative (d) correlations
that were proposed by Newman [5],

P(k; k) = P(k)Q(k;) + O(k) P(k;) - Q(k) O (k) (42)

and
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P(ki,k;) = 2P (k) P(k;) — P*(k;,k;), (43)

where P(k;) and Q(k;) are arbitrary distributions such that
Ekiﬁ(ki)zEkié(ki)zl. (Please note that the above distribu-
tions (42) and (43) may become negative in some situations,
and consequently, some restrictions on the parameter space

are in order.) Assortativity or correlation coefficients [4] for
the above distributions are, respectively, equal to

2
W:—(LL#'J)— and

9

r=—r, (44)

where u, represents the expectation value for P(k;) and My
has the same meaning for é(ki), whereas af, corresponds to

the variance of ﬁ(k,-). Now, in order to facilitate further cal-
culations let us assume that

ki
(k)

ki

P(k;) and é(kl) = @

P(k) = k),  (45)

where

(ky=2 kiP(k) and {g)= > kQ(k;). (46)
k; k;

Note that there is no conflict of notation in the last assign-
ment. Putting the two expressions [Eq. (45)] into P* or P9,
and then taking advantage of the degree detailed balance
condition (10), one can easily check that P(k;) corresponds to
degree distribution. Now, given P(k;) one can execute the
first two steps [(i). and (ii)] of the construction procedure
described in the preceding subsection.

Inserting the relations (45) into Egs. (42) and (43) one
obtains [cf. Eq. (19)]

Pllkiky) _ PUG)O(K)  Qk)Pky) Q) O(k)
kik; (k)Xq) (k)Xq) (@

(47)

and

a d
Plipk) ) PUOP) _ Pk s
kik; (k) kik;
Due to the linearity of the Poisson transform the joint distri-
butions [Egs. (47) and (48)] turn out to be particularly useful
for our purposes. The mentioned usefulness means that
whenever closed-form solutions for the inverse Poisson
transforms of P(k;) and Q(k;) exist, one can also obtain
closed-form solutions for the joint hidden distributions
Rd(h[,hj) and R“(h;,h;) [Eq. (20)].
Generating functions G (ix,iy) [Eq. (21)] for Egs. (47)
and (48) are, respectively given by

G,(ix)G,(iy)
(k)q)

G,(ix)G,(iy) B G,(ix)G(iy)
(k)Xq) (@)

G:;(ix,iy) =
(49)

and
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G:(ix, iy) = ZM - G;(ix,iy), (50)

(ky?

where
G, (ix) = X (ix)"iP(k) and G (ix) = >, (ix)"Q(k,).
k; k;
(51)

Although visually quite complicated, all the above formulas
are in fact very simple. Now, in order to perform the last step
[(iii)] of our procedure, aiming at constructing correlated net-
works, one has to calculate the joint distribution R(hi,hj).
Taking advantage of Eq. (20) one gets

RU(hy,hy) = R(h)S(h)) + S(h)R(h) = S(h)S(hy).  (52)

and

R“(hy.h;) = 2R(h)R(h,) — R*(h;. ). (53)

where, similarly to Eq. (45), one has

E(hl-)=<%R(h,-) and R(h)=e"F'[G,(ix)], (54)

and also
hi
(@)

Note that R(h;), given in Eq. (54), expresses the distribution
of hidden variables in the considered correlated networks
[i.e., the inverse Poisson transform of the degree distribution
P(k;)].

Now, let us translate the general considerations into a spe-
cific example. Suppose that we are interested in networks
with an exponential degree distribution [Eq. (32)]

®
(1+ )T

S(h)=-"S(h) and S(h)=e"F[G,(ix)]. (55)

P(k;) = k;=0. (56)
The distribution of hidden variables in such networks is
given by [Eq. (34)]

oK)
R(h)=——, h;=0. (57)
(k)
For mathematical simplicity, let us assume that the distribu-
tion Q(k;) responsible for correlations is also exponential;

(@)t
(L+ (gt

Given P(k;) and Q(k;) one has to ensure that the joint hidden
distributions (52) and (53), and also the connection probabil-
ity r;; [Eq. (7)] are positive and smaller than 1. It is easy to
check that in our case the condition translates into the rela-
tion

O(k;) = ki=0. (58)

A~
~

1
== A7 1. (59)
V2 (k)

~
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FIG. 5. Average nearest-neighbor degree (k,,)(k) for assortative,
uncorrelated, and disassortative networks with exponential degree
distribution (Sec. III E). Numerical simulations were done for net-
works of size N=10°, (k)=2, (q):v‘a, and averaged over 25 net-
work realizations. Note that given (k)=2, the value of {(g)=+2 cor-
responds to the maximum value of the correlation coefficient
|7 nan| =011 [Eq. (61)].

Now, let us briefly examine the role of Q(k;). Depending
on the value of (g) one obtains stronger or weaker correla-
tions characterized by [Eq. (44)]

2R =) N
4—_ WO+ 1) and r‘=-r% (60)

In particular, given (k), the expression (59) provides possible
values for the correlation coefficients that may be reproduced
in the considered networks

Osrs i

In_ 2
o+ (\ 1)7, (61)

where r=|r|=|r.

In order to check the validity of our derivations we have
performed numerical simulations of correlated networks (42)
and (43) with partial distributions given by [Egs. (56) and
(58)]. In Fig. 3 we depict the results corresponding to degree
distributions [Eq. (56)] in the considered networks. Figure 5
presents the effects of node degree correlations expressed by
the average degree of the nearest neighbor (ANND), which is
defined as

() (ki) = 2 kP (k). (62)
k;j

It is already well known that in the case of uncorrelated
networks [Eq. (25)] the ANND does not depend on k;,

)

() (k) = (63)

(ky’
whereas in the case of assortatively (disassortatively) corre-
lated systems it is an increasing (decreasing) function of k;.
One can find that in our example the corresponding functions
are given by the below formulas,
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<knn>(ki) = 1 + 2<k>’ (64)
(ke (k) = (0 ) (k) = flky), (65)
(ke (k) = (k) (K;) + f(K;). (66)
where
<q> ki~ l(1+<k>>k+1:|
flks) =2k — <q>>{ ( <k>) ) . (67)

As one can see (Fig. 5), the fit between computer simulations
and the above analytical expressions is very good, certifying
the validity of the proposed algorithm (Sec. III D) for gener-
ating random networks with a given degree of correlations.

IV. CONCLUSIONS

In this paper we refer to the set of articles devoted to the
so-called random networks with hidden variables. The im-
portance of this paper consists in ordering certain significant
issues related to both uncorrelated and correlated networks in
which hidden variables mimic desired node degrees. In par-
ticular, we show that networks being uncorrelated at the hid-
den level are also lacking in correlations between node de-
grees. The observation supported by the depoissonization
idea (Sec. III A) allows us to extract the distribution of hid-
den variables from a given node degree distribution. Until
now the distribution of hidden variables required for the gen-
eration of a given degree sequence had to be guessed. From
this point of view our findings complete the algorithm for
generating random uncorrelated networks that was suggested
by other authors [12,24]. We also show that the density of
connections among degree classes k; and k; in sparse uncor-
related networks is a factorized functlon of node degrees.

In this paper we also carefully analyze the interplay be-
tween hidden attributes and node degrees. We show how to
extract hidden correlations from degree correlations, and
how to freely move between the two levels of the networks
complexity. Our derivations provide a mathematical back-
ground for the algorithm for generating correlated networks
that was proposed by Boguifid and Pastor-Satorras [7].
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APPENDIX A

The inverse Poisson transform for the case of continuous
h [Eq. (15)] has been derived by Wolf and Mehta in 1964
[21]. Below we outline the derivation and we show that it is
completely correct in only a very few cases of P(k). It means
that although having R(%) one can always find the corre-
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sponding P(k) [Eq. (4)], the reverse statement is not true, i.e.,
there exist such degree distributions, which do not possess a
corresponding distribution of hidden variables. We also
shortly explain why, even though the formula (15) is not
completely correct for a large class of degree distributions
P(k), it often provides reasonable distributions of hidden
variables R(h). Finally, we adopt the derivation for the case
of discrete i [Eq. (17)].
The aim is to inverse the formula

© _hik
P(k)=f ek'h R(h)dh. (A1)
. K

In order to do so, one has to consider the below identity,

F(x) = f ’ e R(h)e”"dh (A2)
0
w *® . k
= J EMR(h)e‘hdh. (A3)
0 k=0 K

In their derivation Wolf and Mehta [21] assumed that the
formula may be rewritten in the following form:

~ ® 1k
F(x) =, (ix)* f h—R(h) “dh (A4)
k=0 k!
=2 (ix)P(k) = G(ix), (A5)
k=0

where G [Eq. (16)] represents the generating function for the
degree distribution P(k). Then, by the Fourier inversion for-
mula they got the expression [Eq. (15)]

R(h) =" F[G(ix)]. (A6)

The above derivation, however, suffers serious analytical
inaccuracy. Due to Lebesgue’s theorem (see Appendix B) the
second formula for F(x) [Eq. (A4)] is only true for x<x,,
where x.=1 depends on R(4). On the other hand, since x
stands for frequency, and we know that lower frequencies are
more important for the reconstruction of a given signal [here
R(h)], in some cases it is reasonable to forget about math-
ematical accuracy and use the inverse formula (73) for the
whole range of x e (0,%), but still having in mind that the
mentioned inaccuracy may result in unacceptable results
[e.g., negative values of R(h)].

The above reasoning can be simply adopted for the case
of discrete transform with a Poissonian kernel, i.e.,

PHYSICAL REVIEW E 74, 026121 (2006)

k)E

= R(h). (A7)

Let us introduce an auxiliary sequence

J(h) = e "R(h). (AB)

It is easy to show that for a certain range of s<s, the Z
transform of this sequence is equal to a generating function
of the degree distribution [Eq. (16)]

=3 L (49)
h=0
* * 1
=> (2 ('hl%s))ﬂh) (A10)
h=0 \ [=0 :
s 1ns“)’2 J(h) (AL1)
1=0
=> (Ins™'P() =G(ns7"). (A12)
1=0

Applying the inverse Z transform to the last expression one
obtains the formula (17) describing the distribution of hidden
variables

R(h)=¢"Z7'[G(In s7)]. (A13)
APPENDIX B: LEBESGUE’S THEOREM FOR A SERIES
STATE [26]

Suppose that /C R is an interval. Suppose further that the
sequence of functions g, € L(I) (i.e., g, is a Lebesgue inte-
grable function on /) satisfies the following conditions:

(i) =, g, converges almost everywhere on / to a sum
function g:/—"R.

(ii) There exists a non-negative function G e £(I) such
SN 1gn(x)| < G(x) for almost all x € 1.
Then g € L(I), the series

N
> | gudx (B1)
1

n=0

converges, and

J g(x)dx = Egn(xmx E
1 1 n=0

gn(X)dX- (B2)
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